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PLATELETS AND THROMBOPOIESIS
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KEY PO INT S

• Senescent RBCs are
bound to platelets,
forming P-RBC
complexes that are
selectively consumed
by erythrophagocytes.

•A sufficient supply of
platelets is required to
maintain efficient
complex-dependent
clearance of senescent
RBCs.
In humans, ~0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC
(P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in
diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute
to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is
unknown. As a result of damage accumulated over their lifetime, RBCs nearing senes-
cence exhibit physiological and molecular changes akin to those in platelet-binding RBCs
in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senes-
cence are targets for platelet binding and P-RBC formation. Confirming this hypothesis,
pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC
complexes in the most chronologically aged RBC population compared with younger cells.
When reintroduced into mice, these complexes were selectively cleared from the
bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system
and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher
levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC
complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circula-
tion. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune
thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs,
and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may
contribute to the known risk of thrombosis in ITP and after splenectomy.
Introduction
Platelets are endowed with a multitude of cell adhesion mole-
cules that support physical interactions with most other blood
cell types, including red blood cells (RBCs). One well-known
interaction is the binding of platelets to RBCs in venous
thrombi, in which RBCs provide a scaffold for platelet aggre-
gation and stabilize clot structure through the release of mole-
cules such as adenosine diphosphate.1,2 Additionally, constant
and seemingly harmless aggregates called platelet-RBC (P-RBC)
complexes are present in the normal bloodstream,3-5 engaging
1% to 2% of mouse RBCs6,7 and 0.1% to 0.3% of human RBCs.8,9

The origin, purpose, and impact of P-RBC complexes remain
unknown. However, in conditions that compromise RBC health,
such as sickle cell disease (SCD)10,11 and hemodialysis,12 P-RBC
complexes occur at 2 to 3 times greater frequency than in
healthy individuals and play a role in pathogenesis and increase
the risk of thrombosis. In malaria, platelet binding to Plasmo-
dium-infected RBC is ~10 times greater than uninfected cells
and serves a protective function against infection.6-8 The char-
acteristics that distinguish platelet-bound cells from unbound
cells in these examples have not been investigated. Diseased
RBCs are presumed to interact more with platelets by virtue of
RBC membrane changes that activate platelets10,11 and/or
express disease-specific ligands.13 Under in vitro conditions,
additional ligand-receptor interactions are known to facilitate
P-RBC binding,14-16 suggesting that molecular redundancy may
be involved in P-RBC complex formation.
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As RBC approach senescence, which occurs after ~60 days in
mice and 120 days in humans, they undergo membrane
changes that promote recognition and removal by phagocytes
of the reticuloendothelial system, a process known as eryth-
rophagocytosis (EP).17,18 These EP-promoting changes include
externalization of phosphatidylserine (PS) on the mem-
brane,19,20 downregulation of the CD47 self-antigen mole-
cule,21,22 and opsonization of neoantigens generated by
oxidative damage.23 An added layer of surveillance involves
spleen-based mechanical filtration of cells with age and
damage-induced reductions in cell deformability.24 These
mechanisms ensure that senescent RBCs do not accumulate in
the circulation, because they possess increased procoagulant
activity and raise the risk of thromboembolic complications.2

Diseased RBCs that generate excessive P-RBC complexes
exhibit abnormal PS exposure and oxidative damage effects
similar to aged and senescent cells.25-30 Hence, we investigated
whether chronologically old but healthy RBCs also exhibited an
increased propensity for P-RBC formations and explored how
platelet binding influenced their clearance from the blood-
stream. Mice were subjected to whole blood pulse-labeling,
and blood samples were analyzed to quantify and charac-
terize platelet binding to differently aged RBCs, and in other
experiments, the effects of splenectomy and platelet depletion
in mice and humans on senescent RBC clearance and EP were
investigated. The results enabled us to deduce that senescent
RBCs are the preferential target for platelet binding and that
P-RBC generation and subsequent consumption in the reticu-
loendothelial system serves an important function in maintain-
ing senescent RBC clearance.
Methods
Mice, antibodies, and other reagents
The mice, antibodies, and other reagents used in this study are
described in supplemental Methods, available on the Blood
website.

Murine P-RBC complex studies
Mice were injected IV (lateral tail vein) with N-hydroxy-
succinimide ester (NHS)-biotin or carboxyfluorescein succini-
midyl ester (CFSE) for RBC chronological age studies, as
described previously,31,32 and platelet-specific anti-murine
GPIbβ-DyLight649 (X649, emfret Analytics) for platelet chro-
nological age analyses.33 For complex clearance studies,
separately isolated mouse platelets and RBCs were labeled with
CFSE and Atto633, respectively, coincubated (5:1::plate-
let:RBC) with gentle mixing (2 hours room temperature), and
then transfused into recipients. Blood samples (collected from
the tail) were stained and analyzed within 1 to 2 hours of
collection. Imaging flow cytometry was performed on an
ImageStreamX Mk II instrument (Amnis Corporation, Seattle,
WA) equipped with 488 nm (180 mV) and 785 nm (0.57 mV)
lasers and INSPIRE 200.1.620.0 acquisition software. Further
details of these methods are described in supplemental
Methods.

Platelet and phagocyte depletion and splenectomy
Mice were platelet-depleted using anti-mouse glycoprotein 1b
α chain (GPIbα) or αIIbβ3 antibodies according to manufacturer
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and published protocols34-36 (emfret Analytics), and counting
beads were used to enumerate platelets and RBCs in some
experiments. Mice were administered clodronate liposomes
(Liposoma) to deplete macrophages; maximal depletion occurs
within 24 hours, and recovery occurs after ~5 days in the liver
and 1 to 2 weeks in the spleen.37,38 Splenectomized mice were
generated by surgical ligation of the attachments and vessels to
the hilum and allowed to recover for 1 week before use.

EP studies
EP studies in mice were performed according to previously
described methods,39 in which isolated mouse RBCs labeled
with the red-fluorescent lipophilic membrane dye PKH26 were
transfused into recipients (with or without addition of platelet-
labeling antibody, X649), and blood, spleen, and liver phago-
cytes were assessed for labeled RBCs and platelets by flow
cytometry or by immunostaining frozen sections from fixed
organs. See supplemental Methods for details.

Studies of patients who underwent splenectomy
and those with ITP
P-RBC complexes were measured by flow cytometry (CytoFLEX,
Beckman Coulter) on archived venous blood samples (para-
formaldehyde fixed) from a longitudinal cohort of 16 patients
undergoing splenectomy for trauma-related incidents40 and a
second cohort of 20 spleen-intact healthy controls,8 all residing
in Timika, Papua, Indonesia. See supplemental Figure 4 for the
gating strategy. This study was approved by the Human
Research Ethics Committees of Menzies School of Health
Research, Australia (10-1397) and Gadjah Mada University,
Indonesia (KE/FK/0912/EC). P-RBC complexes and markers of
aged RBCs were measured in freshly collected trisodium citrate
anticoagulated whole blood, after provision of informed con-
sent, from healthy donors and patients with clinically diagnosed
immune thrombocytopenia (ITP). ITP diagnosis was based on
the exclusion of alternative causes for thrombocytopenia and
otherwise meeting international consensus criteria.41 This study
was approved by the Australian University Human Research
Ethics Committee (2017/924).

Statistics
Data were analyzed using GraphPad Prism software. Unless
stated otherwise, statistical comparisons and P values were
determined using 2-way analysis of variance with Sidak multiple
comparison. Curves were fitted to data using nonlinear
regression (least squares method with medium convergence
and no weighting), unless stated otherwise.
Results
Platelets form P-RBC complexes in the
bloodstream with the most chronologically aged
RBCs
Mice were subjected to a pulse-chase labeling protocol, in
which, after an IV bolus of NHS-biotin or CFSE to uniformly
label all blood cells, RBCs were sampled and analyzed
according to their chronological age and platelet binding
propensity (Figure 1A). Over 60 days, the proportions of
labeled RBCs steadily declined consistent with the production
of new (unlabeled) and removal of old (labeled) cells
NINGTYAS et al
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Figure 1. Identification and characterization of P-RBC complexes in chronologically aged RBC. (A) Mice were pulse-labeled with NHS-biotin or CFSE (IV delivery), and
blood samples collected from the same mice after several intervals were analyzed by flow cytometry using the method depicted. Proportions of total RBCs (ter119+) labeled
with and without biotin or CFSE were quantified and gated separately, and each population analyzed for proportions of P-RBC complexes (CD41+). Each row of panels shows
the proportions of biotin-labeled and unlabeled RBC and complexes in the same mouse 22 and 52 days after NHS-biotin. (B-C) Proportions of labeled and unlabeled RBCs
(top, circles) and labeled and unlabeled P-RBC complexes (bottom, squares) determined at indicated times after NHS-biotin (B) (7 mice and 2 independent experiments) or
CFSE (C) (6 mice). Symbols and bars indicate means and standard error of the mean (SEM). Comparisons shown between labeled and unlabeled complexes at indicated time
points using 2-way analysis of variance (ANOVA) after Tukey correction for multiple testing (ns; P > .05). (D) Photomicrographs of P-RBC complexes identified in NHS-biotin–
injected mice using imaging flow cytometry analysis. Single platelets are observed physically connected to RBCs and coating of RBC with platelet material (event 45 649, inset).
(E-F) Levels of annexin V and FasR, respectively, on biotin-labeled and unlabeled RBCs (circles, left panels) and biotin-labeled and unlabeled P-RBC complexes (squares, right
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(Figure 1B-C, top). The oldest cells detected were aged
between 58 and 60 days, which agreed with other reports of
the maximal RBC life span in this species,31,32 as did our esti-
mates of RBC half-life (18.3 days; 95% confidence interval,
14.3-25.0).42,43 As expected, the concentrations of total
(unlabeled and labeled) P-RBCs were relatively consistent and
unchanged during the entire 60 days, ranging from ~80
million/mL to 150 million/mL and comprising 1.5% to 2.7% of
the RBCs (supplemental Figure 1A). In conjunction with the loss
of labeled RBCs, concentrations of labeled P-RBCs similarly
declined from ~60 million/mL on day 10 to 1.5 million/mL by
day 58 in the NHS-biotin–treated mice (supplemental
Figure 1B). However, comparing the relative proportions of
P-RBCs in the labeled vs unlabeled RBCs revealed they were
similar up until 45 to 50 days but were then significantly higher
in the labeled (older) cells at later time points, including 52
days (average ± standard error of the mean = 6.7% ± 5.1%; P <
.01) and 58 days (15% ± 8.1%; P < .0001) in the NHS-biotin–
treated mice and 60 days (11% ± 5.6%; P < .0001) in the CFSE-
treated mice (Figure 1B-C, bottom). Overall, both cell labeling
protocols showed the proportion of P-RBC complexes were 2
to 10 times greater in the old (50-60 days) than in younger (<50
day) RBCs. Imaging flow cytometry showed P-RBC complexes
were composed of single platelets that appeared physically
connected to individual RBCs (Figure 1D; supplemental
Figure 2). Samples from a cohort of NHS-biotin–pulsed mice
were analyzed for markers of senescent RBCs to verify the aged
RBC phenotype of the complexes. As expected, the oldest
RBC (aged ≥51 days), compared with younger and unlabeled
RBC, contained significantly higher levels of both annexin V,
which indicates amounts of membrane-exposed PS,44-46 and
Fas receptor (FasR), which is expressed on RBCs undergoing
senescence and apoptosis47 (Figure 1E-F, RBC panels). Similar
relationships were observed in the P-RBC complexes
(Figure 1E-F, P-RBC panels), collectively indicating that annexin
V and FasR staining predicted the chronological age of RBCs
and P-RBC complexes independent of the pulse-chase label.
Furthermore, the levels of both markers were significantly
higher in the platelet-bound vs platelet-free RBCs (Figure 1E
and F, comparing P-RBC vs RBC panels). These differences
confirm the aforementioned observations that P-RBC com-
plexes are mostly restricted to older-aged RBCs and, by
deduction, indicate that RBC chronological age is an important
determinant in platelet-cell binding. Pulse-chase labeling of
mice with a platelet-specific anti-GPIbβ antibody (X649), which
does not cause or interfere with platelet activation or adhesion
in vivo,33 revealed no bias in the chronological age of the RBC-
bound platelets (Figure 1G). One marker of platelet activation,
P-selectin, which is exposed on the surface of degranulated
platelets, was increased on P-RBCs compared with RBCs,
although a second marker, high-affinity αIIbβ3 integrin, which
binds fibrin, was not different (noting its relatively high back-
ground on RBC; Figure 1H), indicating a modest activated state
of the RBC-bound platelets.
Figure 1 (continued) panels) at indicated times after NHS-biotin injection. Comparisons
between labeled cells and labeled complexes using 3-way ANOVA, after Sidak correction
GPIbβ-DyLight649 (X649 positive) in blood samples from 4 mice collected at the indica
indicate SD. (H) Levels of P-selectin and high-affinity αIIbβ3 integrin on RBCs and P-RBC c
of staining antibody (FMO) and in platelets either untreated or treated with 10 μg/mL colla
1-way ANOVA. dp, days past treatment; FMO, fluorescence minus one control; hp, hou
standard deviation.
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P-RBC complexes are rapidly and selectively
removed from circulation via phagocyte-
dependent functions
Aged and damaged RBCs are efficiently removed from circu-
lation by the mononuclear phagocytic system. We hypothesized
that complexes are similarly cleared and, to investigate this,
compared the circulation lifespans of P-RBC complexes, RBCs,
and platelets that were labeled ex vivo and transfused into
recipient mice. The donor platelets were labeled with CFSE and
the donor RBCs with Atto633, and, after coincubation, pro-
duced a mixture of colabeled P-RBC complexes as well as
single-labeled platelets and RBCs (Figure 2A; supplemental
Figure 3). After transfusion, the proportions of donor com-
plexes (relative to donor and recipient complexes combined)
decreased significantly more rapidly than either donor RBCs or
donor platelets (P < .0001), and by 24 hours, <5% of the initial
complexes remained compared with 20% of platelets and 60%
of RBCs (Figure 2B, left). The corresponding clearance rate of
the complexes was, on average, 7 times faster than platelet-free
RBCs (P < .0001) and 3 times faster than cell-free platelets (P <
.001; Figure 2B, right). Therefore, the complexes were cleared
more rapidly from the circulation than both RBCs and platelets.
Cohorts of mice were also treated before transfusion with
clodronate liposomes to systemically deplete phagocytes and,
thus, determine their importance. Clearance of the donor
complexes was significantly reduced by almost fivefold
compared with control mice (P < .0001), whereas the clearance
of the platelets and RBCs were not obviously affected
(Figure 2C). Thus, phagocytes are required to mediate the
clearance of P-RBC complexes. In splenectomized mice, the
clearance rates of transfused complexes were slightly but not
significantly reduced compared with spleen-intact controls
(Figure 2D); however, the proportions of endogenous com-
plexes were significantly higher (P = .009; Figure 2E). This
increase, although potentially masking any changes in the
donor complexes, suggests the spleen is also required for
complex removal. Subsequently, a longitudinal cohort of 16
patients referred for splenectomy and 20 population-matched
healthy spleen-intact control individuals were studied for P-
RBC complex levels (Table 1; supplemental Figure 4;
supplemental Methods). Before surgery, the patients had
significantly lower RBCs (P = .0011), hematocrit (P < .0001), and
hemoglobin (P = .021) than the healthy control group, consis-
tent with their splenic RBC congestion.40 Platelets were signif-
icantly elevated on day 60 (P < .0001) and day 360 after surgery
(P = .023), indicative of splenectomy-induced thrombocytosis,
which is widely reported,48,49 along with increases in RBC
indices suggesting a recovery-driven erythropoiesis and/or a
lack of retention of RBCs by a congested spleen (Table 1).50 As
collective groups, P-RBC complexes in patients before surgery
were comparable with those in healthy controls (mean ± stan-
dard error of the mean = 0.8 × 103/mL ± 0.1 × 103/mL vs 1.1 ×
103/mL ± 0.5 × 103/mL; P = .98) but were significantly higher on
day 60 (11.6 ± 1.5; P < .0001) and marginally but not
shown between labeled and unlabeled cells or complexes using 2-way ANOVA, and
for multiple testing. (G) Mean proportions of platelets and P-RBC labeled with anti-

ted times after X649 administration (IV), compared using 2-way ANOVA. Error bars
omplexes in blood samples from 5 mice, along with levels measured in the absence
gen, as respective negative and positive stain controls. Comparisons indicated using
rs past treatment; ns, not significant P > .05; SB, speed bead calibration bead; SD,
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Figure 2. Characterization of P-RBC complex clearance from the bloodstream. (A) Platelets and RBCs were separately isolated from donor mice, labeled with CFSE and
atto633, respectively, coincubated to generate P-RBC complexes (inset image; platelet, green; RBC, red), and then transfused into recipient mice, either untreated, pretreated
with clodronate or phosphate-buffered saline (PBS) liposomes (phagocyte depletion), or splenectomized. Blood samples collected at indicated times after transfusion (hours
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Table 1. Baseline characteristics of spleen-intact controls and patients undergoing splenectomy

Parameter
Spleen-intact

controls (n = 20)

Patients undergoing splenectomy (n = 16)

Day 0 Day 60 Day 360*

Age, y 28 (26-31) 27 (17-35)

Males, % (n/N) 40 (8/20) 81 (13/16)

Papuan, % (n/N) 95 (19/20) 25 (4/16)

Splenectomy due to trauma, % (n/N) — 88 (14/16)

Platelet counts, ×103/μL blood 194 (156-228) 221 (111-279)
P = .99†

612 (444-708)
P < .0001‡

379 (262-541)
P = .023‡

Hemoglobin, g/dL 11.9 (11-15) 11.3 (8.3-12.6)
P = .021†

13 (12.4-14.3)
P = .012‡

14.8 (12.6-15.7)
P = .003‡

Hematocrit, % 36.4 (32.9-43.6) 32.3 (24.3-37.8)
P < .0001†

39.6 (38.1-41.8)
P = .002‡

43.5 (39.1-46.3)
P = .018‡

RBC count, ×109/μL blood 5.5 (4.9-5.8)§ 4.0 (3.2-4.7)
P = .0011†

5.0 (4.7-5.4)
P = .0002‡

5.5 (4.7-5.8)
P = .0007‡

Peripheral microscopic Plasmodium
parasitemia, % (n/N)

0 31 (5/16) 0 33 (2/6)

Median (interquartile range) shown, unless specified otherwise.

*Splenectomized patients on day 360 restricted to n = 6.

†Comparison spleen-intact controls vs day 0 patients (1-way analysis of variance).

‡Comparison day 0 vs day 60 or day 360 patients (1-way analysis of variance).

§RBC counts missing for 16 spleen-intact individuals.
significantly higher on day 360 (4.1% ± 1.1%; P = .103;
Figure 2F). Pairwise comparison of the platelet-corrected P-RBC
levels confirmed that the complexes were significantly elevated
60 days after surgery (P < .001) by an average 21.5-fold increase
(Figure 2G). Thus, in both mice and humans, the clearance of
P-RBC complexes in the circulation is mediated by the spleen.

P-RBC complexes are phagocytosed by splenic
phagocytes
The results obtained prompted us to investigate whether
splenic red pulp macrophages (RPMs), the major site of RBC
turnover, and/or hepatic phagocytes, which also consume RBC
under certain conditions,51 were able to phagocytose com-
plexes. In vivo phagocytosis assays were conducted, in which
mice were transfused with PKH26-labeled RBCs and a platelet-
specific fluorophore–conjugate antibody (X649) to generate
detectable P-RBC complexes composed of recipient platelets
and donor RBCs; these occurred in similar proportions to
endogenous levels (supplemental Figure 5). After transfusion,
Figure 2 (continued) posttransfusion [h.p.]) were analyzed by flow cytometry using the m
(CD41+), and P-RBC complexes (ter119+ CD41+) were gated and then separately analyzed
The panels show the same mouse analyzed 0.17 (10 minutes) and 18 hp. (B) Proportions
mice measured up to 24 h.p. transfusion (left) and the clearance rates derived from these
than those of platelets and RBCs (P < .0001), and platelet levels were significantly lower t
experiments. (C) Proportions of transfused RBCs, platelets, and P-RBC complexes in recip
clearance rates derived from these data (right). Levels and clearance rates of P-RBC com
respectively); 10 mice and 2 experiments. (D) Proportions of transfused RBC, platelet,
compared with nonsplenectomized (intact) mice (left), clearance rates derived from these
complexes; 3 and 4 mice, respectively. (B-D) Dashed lines indicate decay curves fitted
individuals; comparisons shown using ANOVA. (F) P-RBC complexes in 20 population-ma
60 and 360 days (6 of 16 patients) after surgical removal of their spleen (mean, 95% c
ANOVA), and (G) the P-RBC:platelet ratio for the same patients plotted longitudinally. C

540 8 FEBRUARY 2024 | VOLUME 143, NUMBER 6
RPMs and liver phagocytes were analyzed to identify those
containing only donor RBCs (erythrophagocytes) or both RBCs
and platelets (platelet-containing erythrophagocytes;
Figure 3A). After 2 and 20 hours, the greatest proportions of
erythrophagocytes were observed in RPMs (20%-50%)
compared with liver phagocytes (1%-4%), consistent with the
spleen’s dominant role in RBC consumption. However, an
additional 4% to 13% (2 hours) and 14% to 22% (20 hours) of
erythrophagocytes also contained platelets, indicative of
phagocytosis of P-RBC complexes. The alternative explanation
that these resulted from bystander ingestion of platelets was
considered less likely because the frequency of phagocytes
containing platelets without RBC was only 1% to 5% (Figure 3B).
As confirmation, immunostaining of sections of spleen from
mice that received a transfusion showed frequent examples of
RPM containing PKH26- and X649-labeled materials (Figure 3C;
supplemental Figure 6), indicative of phagocytosed complexes.
The flow cytometry results also revealed a significant disparity
between the relatively large proportions of platelet-containing
ethod depicted. Total (recipient plus donor) populations of RBCs (ter119+), platelets
for proportions of respective donor cells (atto633+, CFSE+, or atto633+ and CFSE+).

of transfused RBCs, platelets, and P-RBC complexes in the bloodstream of recipient
data (right). Levels and clearance rates of P-RBC complexes were significantly lower
han RBC numbers at indicated time points (P < .001). Nine mice and 3 independent
ient mice treated 24 hours prior with clodronate or PBS (control) liposomes (left) and
plexes were significantly higher in clodronate vs control mice (P < .001 and .0001,
and P-RBC complex levels in recipient mice previously splenectomized (splenec.)
data (right), and (E) relative proportions of recipient (unlabeled) RBCs, platelets, and
using nonlinear regression. (B-E) Symbols and bars indicate means and SEM or
tched spleen-intact individuals (healthy) and 16 patients measured before (pre) and
onfidence interval, and minimum and maximum values; comparisons shown using
omparisons shown using Kruskal-Wallis test. Plt, platelet.
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erythrophagocytes (at least 25%) and much smaller proportions
of P-RBC complexes in the bloodstream available for phago-
cytosis (1%; supplemental Figure 5B). This suggested platelets
in some way enhance EP, and to investigate this, mice were
depleted of platelets before being transfused with the PKH26-
labeled RBCs. Two different platelet depletion antibodies were
used, anti-GPIbα and anti-αIIbβ3; each is known to induce
severe platelet depletion (<1% normal platelet levels) lasting 2
to 3 days,34-36 which we confirmed (supplemental Figure 7). In
additional experiments, PKH26-labeled RBCs were transferred
to mice lacking the thrombopoietin receptor geneMpl (Mpl−/−).
These mice have ~10% of normal platelet numbers, which are
sufficient to maintain hemostasis and prevent active bleeding.52

In the antibody platelet-depleted mice, splenic eryth-
rophagocytes were significantly reduced by 25% to 35%
compared with control mice (P < .01 and P < .05 for each
respective antibody), but there were no differences between
the Mpl−/− and control wild-type mice (Figure 3E). None of the
platelet depletions caused changes in the liver eryth-
rophagocyte levels (Figure 3F). In addition to reduced EP, levels
of PKH26-labeled RBCs in the bloodstream of the antibody-
treated mice were almost twice as those of controls (P <
.0001 and P < .001 for each respective antibody; Figure 3G).
Thus, under conditions of severe but not mild reductions in
platelet count, EP and the clearance of RBCs were perturbed.
Collectively, this suggests that not only are P-RBC complexes
phagocytosed by RPM, but platelets are also required for effi-
cient EP.
Platelets are required to maintain senescent RBC
clearance
A requirement for phagocytes in senescent RBC clearance has
been demonstrated previously,53 and we confirmed these
findings, showing that systemic phagocyte depletion (clodro-
nate treatment) significantly impeded the clearance of aged
(>42 days) RBCs in mice subjected to NHS-biotin pulse-chase
labeling (supplemental Figure 8). As our observations sug-
gested that platelet binding to RBC promotes RBC clearance
through ingestion by phagocytes and that P-RBC complexes
comprise predominantly senescent RBC, we hypothesized that
platelets were required for senescent RBC clearance. To test
this, NHS-biotin–pulsed mice were subjected to platelet
depletion (anti-GPIbα treatment) at the point when increased
P-RBC generation to aged RBCs was first observed (day 45).
The levels of P-RBCs and rates of RBC clearance before and
after platelet depletion were compared with those of platelet-
replete control mice (Figure 4A). On day 1 after platelet
depletion, P-RBC levels were reduced more than tenfold and
remained significantly depressed for 3 days before recovering
to normal levels on days 6 to 7 (Figure 4B). These kinetics were
comparable with the drop and recovery of platelets after either
anti-GPIbα or -αIIbβ3 antibody treatment (supplemental
Figure 7), indicating that complex formation requires a con-
stant supply of platelets. Strikingly, the reductions in platelets
and complexes coincided with a marked retention of biotin-
labeled RBCs; this difference lasted for several days and was
reproducible in multiple experiments (supplemental Figure 9).
Regression analysis showed the effect was most significant for
the first 3 days after platelet depletion (Figure 4C) and corre-
sponded to an average 3.4-fold decrease in the rate of RBC
clearance (Figure 4D). In another platelet-depleted cohort, we
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found that aged RBCs (identified by annexin V staining) were
increased in the bloodstream during the platelet nadir and
recovery (days 2-7 after anti-GPIbα treatment; supplemental
Figure 10). As a comparison, P-RBC complexes and RBC
clearance were measured in Mpl−/− mice that were treated with
NHS-biotin. Consistent with their reduced platelet count,
Mpl−/− mice contained ~50% fewer complexes than wild-type
littermates but still showed an equivalent preference for
P-RBC formation with older RBCs (aged >45 days; Figure 4F).
However, the RBC half-life and, by deduction, clearance rate
were not different between Mpl−/− and wild-type strains
(Figure 4G). Thus, only the severe thrombocytopenia conditions
affected cell clearance. To extend these findings to humans,
blood samples from 9 patients with clinically well-defined ITP
along with matched healthy controls were analyzed for P-RBC
complexes and aged RBC levels. Patients exhibited significantly
depressed platelet count and elevated mean platelet volume
but minimal differences in other hematological parameters
(Table 2) and, as expected, had significantly lower proportions
of P-RBC complexes compared with controls (Figure 4H).
Analysis of the RBCs showed increased levels of the age-
defining markers, annexin V and FasR, on the surface of the
cells (Figure 4I-J). These results indicate that patients with ITP
have a greater circulating burden of aged RBCs, which is related
to their platelet deficiency.

Discussion
The existence of platelet-bound RBCs as an integral component
of the bloodstream has been recognized,3-5 but until this study,
their functional significance was not known. Prior work showing
platelets binding to diseased RBCs led us to investigate
whether chronologically old or senescent RBCs were also a
target of platelet binding. Senescent RBCs constitute a constant
and numerically significant fraction of the circulation, and unlike
young healthy cells, the membrane of old RBCs mimics that of
platelet-adherent cells. By studying mice with pulse-labeled
RBCs, we could evaluate P-RBC complexes formed in vivo
with physiologically aged RBCs. We found the oldest cells
(aged 55-60 days) contained ~10 times more complexes than
the younger cells. This indicates that platelets in the circulation
preferentially bind to old and senescent RBCs. The apparent
selectivity of the binding is likely to be complex because old
and damaged RBCs exhibit various modifications that could
promote platelet binding.54 Our studies suggest roles for PS
and FasR because both are more highly expressed on the older
and platelet-bound RBCs. Previous work has shown that RBC-
expressed PS interacts with platelet molecules CXCL16 and
CD36,16 and FasR on RBCs can bind Fas ligand on platelets15;
P-RBC interaction also stimulates additional FasR expression on
RBCs.15 P-selectin, which was increased on RBC-bound plate-
lets, can bind sialyl Lewis X antigen55 and is found on sickle
RBCs.56 In other studies, CD36 on platelets also enables bind-
ing to Plasmodium-infected RBCs,13 and interactions between
platelet αIIbβ3 integrin and RBC ICAM414 are important for
P-RBC complex generation in SCD.57 Collectively, these find-
ings support the concept that aged, diseased, or otherwise
damaged RBCs may act as substrates for platelet binding.

Senescent RBCs, cell aggregates, and debris produced in cir-
culation are efficiently removed by the mononuclear phagocytic
system. In our study, we demonstrated that P-RBC complexes
NINGTYAS et al
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Figure 4. Effects of platelet depletion on senescent RBC retention in the circulation. (A-D) Cohorts of mice were pulse-labeled with NHS-biotin (IV, day 0) and then
treated with platelet-depleting anti-GPIbα or nonimmune isotype (control) antibodies on day 45, at which time the mean proportions of P-RBC complexes in the labeled RBCs
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samples collected from 9 patients with primary ITP and 9 healthy controls. Comparisons shown between groups using Student t test. Bars indicate means.
undergo a similar fate. Ex vivo–generated complexes that were
returned to the circulation via transfusion were almost
completely cleared within 24 hours, with a removal rate 7 and 3
times faster, respectively, than either RBCs or platelets not
bound into complexes. Although these may not represent
physiologically formed complexes, the overall observations
PLATELET-RBC COMPLEXES AND SENESCENT RBC CLEARANCE
suggest that platelet binding is the critical factor driving their
removal. If endogenous complexes are cleared at equally
accelerated rates, their existence in the bloodstream is prob-
ably relatively transient. The physical presence of platelets may
hinder the ability of an RBC to pass through the splenic red pulp
cords and become entrapped. Our observations showing
8 FEBRUARY 2024 | VOLUME 143, NUMBER 6 543



Table 2. Baseline characteristics of patients with ITP and healthy controls

ITP Healthy control

Number of individuals 9 9

Age, y 62 (51-71) *

Males/females (n/n) 8/1 *

ITP category (chronic/new diagnosis) 4/5

Platelet count, ×103/μL blood 8.5 (1-45)
P < .00001†

194 (173-218)

Mean platelet volume (fL) 8.91 (7.60- 9.75)
P = .013†

7.07 (7.0-8.0)

RBC count, ×109/μL blood 4.14 (3.94-4.45) 4.22 (3.64-4.58)

Hemoglobin, g/dL 132 (127-138) 134 (121-146)

Hematocrit, % 0.376 (0.351-0.399) 0.377 (0.338-0.412)

White blood cell count, ×103/μL blood 7.93 (5.85-7.75) 5.33 (4.35-6.50)

Median (interquartile range) shown, unless specified otherwise.

*Ages and sex not available. Recruitment age range, from 18 to 70 years.

†Comparison of ITP patients vs healthy controls (1-way analysis of varaiance).
elevated levels of complexes in the bloodstream of both sple-
nectomized mice and human patients indicates the importance
of this organ for clearance of complexes, although steric hin-
drance and phagocytosis in other tissues may also contribute to
their overall removal. Additionally, a significant proportion of
erythrophagocytes in the splenic red pulp contained ingested
complexes, with a ratio of phagocytosed complexes to platelet-
free RBCs (~1:3) exceeding that in the circulation (~1:100). This
suggests that P-RBCs may also be selectively phagocytosed,
and platelets, upon binding to RBCs, enhance their recognition
and/or ingestion. This could occur because platelets provide
greater PS (observed in Figure 1E), which would strengthen the
phagocyte “eat-me” signal.17 Platelets may also support the
RBC-phagocyte interaction through upregulation of cell-
adhesive receptors58 and release of a range of prophagocytic
molecules.59,60 Additionally, platelets are a major source of
thrombospondin, a dimeric molecule that can bridge oxidized
CD47 (expressed on senescent RBC) and the phagocytic SIRP-α
receptor.21 Investigating whether binding to RBC stimulates
these prophagocytic properties in platelets and how this drives
erythrocyte clearance are important questions for future studies.

Our results also identified an important relationship between
platelet count, P-RBC complex formation, and the rate at which
senescent RBCs are normally removed from the circulation.
Severe depletion of platelets (<1% of normal levels) in mice
reduced the proportion of platelet-bound senescent RBC by
more than 90% and resulted in their retention in the circulation,
and in a cohort of ITP patients, equivalent reductions in platelet
count and P-RBC complexes were associated with a greater
burden of aged RBC. Our mouse studies also showed that
platelet depletion reduced EP and that phagocyte depletion
caused a similar retention of aged RBCs. However, in Mpl-
deficient mice, which have a relatively mild platelet deficiency
(10% of normal levels), neither RBC clearance nor EP were
affected, indicating that complex-mediated cell clearance was
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only compromised by severe losses of platelets. Therefore, a
healthy platelet count seems sufficient to meet the normal
demands of RBC clearance, and only a severe thrombocyto-
penic state disrupts this relationship. Alternatively, the chronic
platelet deficiency in Mpl−/− mice may have compensatory
effects on RBC turnover, which could also explain why the
buildup of complexes observed in patients who underwent
splenectomy was temporary. Compensation may be provided
by specialized monocyte recruitment in the liver, which has
been shown under conditions of erythrocyte stress to be an
important support for RBC removal and iron recycling.61

Relationships between platelets, complex formation, and
senescent RBC clearance observed in the mouse studies likely
extend to humans. We were able to confirm the occurrence and
levels of complexes observed in previous human studies.4,8,9

Additionally, we observed the effects of spleen removal
(elevated complexes) and acute suppression of platelet count
(reduced complexes and elevated aged RBCs) for the first time,
to our knowledge, and these findings were largely consistent
with the mouse studies. Considering the relative levels of
platelets, RBCs, and complexes, this mechanism of complex
production and aged RBC disposal may be a significant factor in
the maintenance of blood homeostasis. In mice ~160 million
RBCs per mL per day are cleared under normal physiological
conditions (assuming a 10 000 million per mL count and 60-day
lifespan). Based on our estimates of P-RBC lifespan (7 times
shorter than RBC) and bloodstream levels (1.5%-2.7% or 80
million-150 million per mL), P-RBC clearance rates may range
between 9.5 million to 18 million P-RBCs per mL per day, which
constitutes 6% to 11% of the total RBC clearance. Translating
this to humans, the fraction of RBC clearance attributable to P-
RBCs may be somewhat less at 0.7% to 2%, assuming RBC
turnover is 42 million/mL per day (5000 million/mL RBC count
and 120-day lifespan) vs P-RBC turnover of 0.3 million/mL to 0.9
million/mL per day (based on 0.1%-0.3% or 5 million/mL-15
NINGTYAS et al



million/mL P-RBC levels and a sevenfold reduced lifespan).
However, these calculations may underestimate the possible
synergistic effects of platelet binding on the already clearance-
prone senescent cells. In addition, if each complex contains at
least 1 platelet, these levels of complexes in humans would
consume 2% to 6% of the total platelet pool (250 million/mL);
increased complex formation would consume even greater
platelet numbers. Such a relationship is exemplified in malaria
in which platelet binding to Plasmodium-infected RBC is asso-
ciated with thrombocytopenia.8

Our findings also predict that conditions in which complex
generation is reduced (ITP) or when the clearance of complexes
is impaired (splenectomy) will cause the inappropriate accu-
mulation of old RBCs in the bloodstream and, as a conse-
quence, increase the risk of coagulation-related outcomes.
Thromboembolic events are widely reported after splenec-
tomy62-65 and in ITP,66-69 and we speculate the buildup of aged
RBCs and complexes, as well as increased RBC-endothelial
interactions and platelet activation, are contributing to the
hypercoagulable conditions proposed to explain this prob-
lem.70 Similarly, the excessive levels of complexes observed in
SCD may contribute to imbalances in coagulant function char-
acteristic of the condition.10,11 Future studies will explore the
effect of antiplatelet or anticoagulant therapies on the stability
of P-RBC complexes. Many other diseases including myelo-
proliferative neoplasms, chronic systemic inflammation, auto-
immune disease, and iron deficiency are accompanied by
abnormal production and/or compromised integrity of RBCs
and platelets, which could disrupt the balance between platelet
count, complex formation, and RBC turnover. Furthermore,
individuals with high platelet and RBC counts have significantly
elevated risks of thrombosis.71,72 Therefore, a better under-
standing of the physiological effects of P-RBC complexes in
disease is warranted.
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